If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14y^2=350
We move all terms to the left:
14y^2-(350)=0
a = 14; b = 0; c = -350;
Δ = b2-4ac
Δ = 02-4·14·(-350)
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19600}=140$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140}{2*14}=\frac{-140}{28} =-5 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140}{2*14}=\frac{140}{28} =5 $
| -0.8-8=0.2x | | 3x-16=9x+4 | | 13x-11x=5 | | 3t-13=8 | | 11x-21x=180 | | 2x/5=9/1 | | 2x-45=12x | | 90+39+4x+7=180 | | 2p+3=2 | | 7m+12=2(m-3) | | (2x-1)3=15 | | -8+x-5-4=x-7-2x | | 2(k+1)−1=3 | | 8x+(4x)=12x | | 15+k=25 | | 3x+2;x=3 | | 5(v+1)-v=3(v-1)+1 | | V+4=3v+16 | | -2x+2(2x+19)=54 | | 6y–2y–12=8 | | 5x-4(4x-13)=-14 | | 4x+2+4x-10+3x-3=180 | | 62=6x-(-7x-19) | | 16+2=8y | | -8+7n=4n+2-2n | | -57+4x=180 | | 3^-n=1.8 | | 3/10x=36/10 | | 7−2x=491 | | -7(3a-3)=21 | | a+4=-4a+6 | | 252x=125x+2 |